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ABSTRACT

A global renormalization procedure used recently to calculate thermal volumetric

properties near and to far from the critical point for two square-well fluids, widths 1.5 and

3.0, with accurately known critical points is here applied in an effort to determine where

the critical point is located for three square-well fluids, widths 1.375, 1.75, and 2.0, for

which accurate simulation data near the critical point are lacking. The present approach

is suggested as an alternative to extrapolation methods that have been applied in the past

and resulted in widely divergent predictions. A problem in the past has been knowing

what to use as effective crictical point exponent, βeff, for purpose of the extrapolation.

The present renormalization calculations indicate that rather widely different behaviors

of βeff as a function of distance from the critical point can be expected for square wells

of different width.

KEY WORDS: critical point; gas-liquid coexistence curve; global renormalization;

square-well fluids.
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1. INTRODUCTION

A global renormalization procedure has been applied recently to calculate thermal

volumetric properties of a Lennard-Jones fluid [1] and of two square-well fluids, [2] of

width 1.5 and 3.0, for which the location of the gas-liquid critical point has been deter-

mined accurately by simulation methods. What if the location of the critical point is

not yet known accurately? Can renormalization methods be used to find that location?

This question is explored here for several square-well fluids, using the renormalization

procedure together with recent accurate molecular dynamics (MD) results [3] for co-

existing gas and liquid densities when not close to the critical point. Because of the

difficulty in performing simulations when close to the critical point, the data in the MD

investigations were obtained at densities either less than 35% or more than 170% of the

critical point density, and at temperatures all 5% or more below the critical point tem-

perature. Then, based on the simulation data, estimates were made of the critical point

temperature, density, and pressure for each square-well. The values obtained for these

critical point quantities differed substantially from estimates that had been made previ-

ously from Monte Carlo (MC) simulations [4] performed over similar ranges of density

and temperature.

In the present investigation, new estimates are made for the critical point tempera-

ture, density, and pressure by assuming that thermal behavior is given by global renor-

malization theory once the square-well potential and three constant parameters internal

to the (approximate) theory are specified. This provides an alternative to making –

perhaps rather questionable – assumptions about effective critical point exponents to

extrapolate from accurate simulation data to find the critical point.

In the work reported below, estimates have been made for the three numerical pa-

rameters internal to the theory to be used for each square well in order to make global

renormalization calculations of contours of coexisting vapor and liquid densities. The
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calculated contours for each square-well are then compared with the MD results [3] for

that square well. The renormalization calculations provide also information about the

temperature dependence of the effective critical point exponent, βeff. Plots are presented

to show how βeff varies with temperature for each square well.

The renormalization procedure used in this investigation is indicated below in Sec.

2. Results are summarized in Sec. 3.

2. METHOD OF CALCULATION

The general renormalization procedure followed here was the same as that used in

Ref. [2]. For completeness and convenience of reference the procedure is summarized

here in Secs. 2.1 and 2.2, with some details specific to the present investigation noted

toward the end of Sec. 2.3.

2.1 RG equations

In the global renormalization approach the free energy density, f(T, ρ), of the fluid

(Helmholtz free energy per unit volume) at temperature T and number density ρ is sep-

arated into repulsive and attractive parts. Beginning with f0(T, ρ)=frepul(T, ρ), renor-

malization contributions are computed for increasingly long fluctuation wavelengths,

beginning with wavelength λ1.

After n renormalizations (n − 1 doublings of the initial fluctuation wavelength λ1)

the free energy density f(T, ρ) is written as

f(T, ρ) � fn(T, ρ)− ρ2a(T, ρ), (1)

where, for each n (> 0),

fn(T, ρ) = fn−1(T, ρ) + δfn(T, ρ). (2)

The−ρ2a(T, ρ) is the contribution of the attractive interactions to the free energy density

in mean field approximation. The increment δfn(T, ρ) at each order n is

δfn(T, ρ) =
1

βVn

ln
In,s(T, ρ)

In,l(T, ρ)
. (3)
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Here β = 1/kBT , where kB is Boltzmann’s constant, Vn is the averaging volume,

V = (zλ/2)3, and the In,s(T, ρ) and In,l(T, ρ) are integrals over the amplitudes of the

wavepackets of fluctuations of wavelengths λ � λn = 2n−1λ1:

In,i(T, ρ) =
∫ ρ′

0
dxe−βVnDn,i(T,ρ,x), i = s, l. (4)

In Eq. (4) the upper density limit, ρ′, is the smaller of ρ or ρmax–ρ, where ρmax does

not exceed the density of closest packing of the molecules. And each Dn,i(T, ρ, x) is

given by

2Dn,i(T, ρ, x) = f̂n−1,i(T, ρ+ x) + f̂n−1,i(T, ρ− x)− 2f̂n−1,i(T, ρ), (5)

where, for i = l,

f̂n−1,l(T, ρ) = fn−1(T, ρ), (6)

and for i = s,

f̂n−1,s(T, ρ) = fn−1(T, ρ)− ρ2aλn(T, ρ), (7)

where

aλ(T, ρ) = −
∫

dr cos (k · r)U2(r)grepul(T, ρ, r). (8)

In Eq. (8) grepul(T, ρ, r) is the radial distribution function for the repulsive interactions,

U2(r) is one half the attractive portion of the two-body potential, and k is the wave

vector of the fluctuation of wavelength λ = 2π/k. In the limit n → ∞, for which

λn → ∞, the aλ(T, ρ) becomes simply the a(T, ρ) in Eq. (1) above.

The procedure summarized above is capable of determining the free energy density

completely, by taking fully into account details of the intermolecular potential and con-

tributions made by fluctuations at all wavelengths, not limiting just to some aspects of

contributions made by fluctuations of asymptotically long wavelengths.
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2.2 Implementation for square-well potential

The square-well potential is a spherically symmetric two-body potential which has

the form

U(r) = USW (r) =


∞, r ≤ σ

−ε, σ < r < Rσ

0, r ≥ Rσ

(9)

where r is the distance between the centers of the two molecules.

The free energy density f0(T, ρ) = frepul(T, ρ) of the gas comprised of hard spheres

of diameter σ is, apart from a contribution to frepul(T, ρ)/ρ dependent on temperature

but independent of density, approximately

βfrepul

ρ
=
4y − 3y2

(1− y)2
+ ln y, (10)

where y = 1
6
πρσ3. The pressure P = ρ∂f/∂ρ − f calculated using f = frepul given

by Eq. (10) yields, when multiplied by β/ρ, the Carnahan-Starling [5] expression for

Z = βP/ρ = PV/RT, namely

Zrepul = ρ
∂

∂ρ

(
βfrepul

ρ

)
=
1 + y + y2 − y3

(1− y)3
. (11)

In evaluating Eq. (8), the grepul(T, ρ, r) was approximated as that for a gas of hard

spheres, of diameter σ, in Percus-Yevick approximation [6]. And the attractive part of

the potential, U2(r), was taken to be
1
2
USW of Eq. (9) for all r > σ and zero for r ≤ σ.

With the above substitutions for the repulsive and attractive portions of the in-

termolecular potential, once σ, ε, and R of the potential and the parameters λ1 and

z internal to the RG theory are specified, the f(T, ρ) given by Eq. (1) is completely

determined – apart from a contribution [noted above Eq. (10)] that depends only on

temperature and does not contribute to the pressure – upon completion of n renormal-

izations.
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2.3 Some calculational details

In the numerical calculations, the integrations were performed by trapezoid rule,

using equal size steps. Typically, 1000 steps were used for the calculation of each aλ(T, ρ),

in Eq. (8). For the grepul(T ,ρ, r) appearing in Eq. (8), the table in Ref. [6] was used, with

interpolation when required. Equation (8) was evaluated for the twelve (dimensionless)

densities ρσ3=0.0, 0.1 ,0.2 , . . . , 1.1 for which tabulated values of grepul were available,

[6] and a polynomial of fifth order in ρσ3 was fitted to each aλ(T, ρ) for use in Eq. (7),

which needs to be evaluated at many intermediate densities in the range 0 < ρσ3 < 1.1.

For use in the present investigation, the free energy density f was evaluated, at

(dimensionless, ρσ3) density intervals of 0.001, for 0 < ρσ3 ≤ 1.1; for the lower limit,

a small value, ρσ3 = 10−12, was used in place of ρσ3 = 0 to avoid the logarithmic

singularity in Eq. (10). The integrand in Eq. (4) was evaluated, by trapezoid rule,

at the same dimensionless density intervals, 0.001, using for the maximum integration

limit ρ′σ3 = ρmaxσ
3/2 = 1.1/2. Smaller choices for that limit, down to ρ′σ3 = 0.9/2,

had almost no noticeable effect on the results obtained here. Four point interpolation

was used to estimate f when calculating thermal properties at densities intermediate

between those at which f had been evaluated.

Calculations of fn(T, ρ) were carried through to order n = 9. After the first few

iterations of the recursion relations for increasing n, contributions δfn decreased rapidly

in size, with negligible contributions except very close to the critical point for n > 6.

(Although contours of coexisting liquid and vapor densities change very little for n >

6, values obtained for βeff close to the critical point are somewhat more sensitive to

renormalization corrections, so calculations were continued to larger n until changes in

βeff were negligible to within 0.05% of the critical point temperature.)

3. RESULTS

Renormalization calculations were performed as described above for square wells
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of width R = 1.375, 1.5, 1.75, and 2 to find P* as a function of T* and ρ*, where

P*= Pσ3/ε, T*= kBT/ε, and ρ*= ρσ3 = Nσ3/V are the reduced (dimensionless)

pressure, temperature, and density of the fluid. Results depended upon the choices

made for the two internal parameters, λ1 and z, required for the evaluation of Eq. (3).

They also depended on the choice made for ε/kB in the renormalization calculations. As

in the earlier investigation [2] of square wells of width R = 1.5 and 3.0, the well depth,

ε/kB, used when carrying through the renormalization calculations, was assigned a value

up to about 3% greater than the value ε/kB = 1 used in the simulations. The choice

for ε thus served as the third adjustable constant in the (approximate) renormalization

calculations. (The R and σ = 1 used in the renormalization calculations were not

changed from what had been used in the simulations.)

Critical points calculated for particular choices of the three adjustable constants are

listed for each of the four square wells in Table I. Each λ1 listed in the table is roughly

three times as large as Rσ. The values listed in Table I for the other two renormalization

constants, z and ε/kB, were ones for which renormalization calculations gave reasonably

good agreement with MD simulation results, [3] as shown in Figs. 1-4.

Approximately equally good agreement with the MD results was obtained for choices

of λ1 that are 10-20% larger or smaller than those listed in Table I, provided the z and

ε/kB were suitably readjusted [9]. For a 10% increase in λ1 this required, for the different

width wells, a 3-6% decrease in z and 0-0.3% increase in ε/kB. The resulting calculated

values for Tc*, ρc*, and Pc* then changed by -0.5% to -1%, -0.1% to +1.5%, and -2% to

-5% , respectively, and Zc = Pc* /ρc*Tc* by -2% to -5%, for the different well widths.

These figures probably represent lower limits on uncertainties for the renormalization

values for the critical point constants listed in the table, viz. approximately ±1% for

Tc*, ±1.5% for ρc*, and ±5% for Pc* and Zc.

In carrying through the renormalization calculations, it was found that the width,
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∆ρ = ρliquid−ρvapor, of the coexistence curve varied as a function of temperature distance,

∆T = Tc − T, from the critical point for each square well with nearly the same critical

point exponent β � 1/3 for ∆T < 0.01Tc. But the local βeff = dlog|∆ρ/ρc|/dlog|∆T/Tc|
for larger ∆T behaved quite differently for the different well widths. This is shown for the

four square wells of widths R = 1.375 to R = 2 in Figs. 5a and 5b. The βeff is seen there

to have already quite different values for the different square wells when ∆T = 0.03Tc

(corresponding to log|∆T/Tc| � −1.5). Thus it appears that the variation of βeff with

∆T may need to be taken into account whenever extrapolating data obtained farther

than about 1% below Tc in trying to estimate accurately the location of the critical

point. And that variation of βeff with ∆T is different for attractive wells of different

width.

9



REFERENCES

[1] J. A. White, J. Chem. Phys. 112: 3236 (2000).

[2] J. A. White, J. Chem. Phys., in press.

[3] J. R. Elliott and L. Hu, J. Chem. Phys. 110: 3043 (1999).

[4] L. Vega, E. deMiguel, L. F. Rull, G. Jackson, and I. A. McLure, J. Chem. Phys. 96:

2296 (1992).

[5] N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51: 635 (1969).

[6] G. J. Throop and R. J. Bearman, J. Chem. Phys. 42: 2408 (1965).

[7] G. Orkoulas and Z. Pangiotopoulos, J. Chem. Phys. 110: 1581 (1999).

[8] E. de Miguel, Phys. Rev. E 55: 1347 (1997).

[9] For a somewhat different choice of λ1, z, and ε/kB for width 1.5 square well, see

Ref. [2]. That reference also shows some calculations compared with accurate MC

simulation data [7] for a square well of width R = 3.

10



Table I. Estimated location of critical point for square wells of width 1.375,

1.5, 1.75, and 2.

———————————————————————————————————

R λ1 z ε/kB Tc* ρc* Pc* Zc Ref.

——— ——– ——– ————– ————– ————– ————– ————– —–

1.375 3.8 0.87 1.022 0.971 0.372 0.084 0.232 a

1.01 0.344 0.10 0.29 b

0.974 0.355 0.105 0.30 c

1.5 4.5 0.94 1.027 1.215 0.319 0.097 0.250 a

1.27 0.306 0.11 0.30 b

1.219 0.299 0.108 0.30 c

1.218 0.310 0.095 0.252 d

1.75 6.0 0.98 1.023 1.797 0.262 0.130 0.275 a

1.79 0.267 0.12 0.25 b

1.811 0.284 0.179 0.35 c

2.0 7.0 0.95 1.031 2.671 0.256 0.191 0.280 a

2.61 0.267 0.17 0.24 b

2.764 0.225 0.197 0.32 c

2.684 0.235 e
———————————————————————————————————

a. This work, for the indicated choice of parameters λ1, z, and ε/kB.

b. MD estimates, from Table III of Ref. [3]. The value listed there for ηc has been

multiplied by 6/π to convert it to ρc*.

c. MC estimates from Table VI in Ref. [4].

d. MC results listed in Table I of Ref. [7].

e. MC values for N = 1364 particles, from Table II of Ref. [8].
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FIGURE CAPTIONS

Fig. 1. Densities at the liquid-vapor coexistence curve for R = 1.375. Circles: MD

simulations [3]. Solid line: RG calculations.

Fig. 2. Densities at the liquid-vapor coexistence curve for R = 1.5. Circles and solid

line as in Fig. 1.

Fig. 3. Densities at the liquid-vapor coexistence curve for R = 1.75. Circles and

solid line as in Fig. 1.

Fig. 4. Densities at the liquid-vapor coexistence curve for R = 2. Circles and solid

line as in Fig. 1.

Fig. 5. Dependence of effective critical point constant βeff =

dlog|∆ρ/ρc|/dlog|∆T/Tc|, for width ∆ρ = ρliquid-ρvapor of coexistence curve, on tem-

perature distance ∆T = Tc − T below the critical point for each of the four coexistence

curves shown in Figs. 1-4.
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